2,456 research outputs found

    Ultrasonic cleaning: an historical perspective

    Get PDF

    Pressure-Assisted Protein Extraction: A Novel Method for Recovering Proteins from Archival Tissue for Proteomic Analysis

    Get PDF
    Formaldehyde-fixed, paraffin-embedded (FFPE) tissue repositories represent a valuable resource for the retrospective study of disease progression and response to therapy. However, the proteomic analysis of FFPE tissues has been hampered by formaldehyde-induced protein modifications, which reduce protein extraction efficiency and may lead to protein misidentification. Here, we demonstrate the use of heat augmented with high hydrostatic pressure (40,000 psi) as a novel method for the recovery of intact proteins from FFPE mouse liver. When FFPE mouse liver was extracted using heat and elevated pressure, there was a 4-fold increase in protein extraction efficiency, a 3-fold increase in the extraction of intact proteins, and up to a 30-fold increase in the number of nonredundant proteins identified by mass spectrometry, compared to matched tissue extracted with heat alone. More importantly, the number of nonredundant proteins identified in the FFPE tissue was nearly identical to that of matched fresh-frozen tissue

    In utero and ex vivo Electroporation for Gene Expression in Mouse Retinal Ganglion Cells

    Get PDF
    The retina and its sole output neuron, the retinal ganglion cell (RGC), comprise an excellent model in which to examine biological questions such as cell differentiation, axon guidance, retinotopic organization and synapse formation[1]. One drawback is the inability to efficiently and reliably manipulate gene expression in RGCs in vivo, especially in the otherwise accessible murine visual pathways. Transgenic mice can be used to manipulate gene expression, but this approach is often expensive, time consuming, and can produce unwanted side effects. In chick, in ovo electroporation is used to manipulate gene expression in RGCs for examining retina and RGC development. Although similar electroporation techniques have been developed in neonatal mouse pups[2], adult rats[3], and embryonic murine retinae in vitro[4], none of these strategies allow full characterization of RGC development and axon projections in vivo. To this end, we have developed two applications of electroporation, one in utero and the other ex vivo, to specifically target embryonic murine RGCs[5, 6]

    Criminal Law and Procedure

    Get PDF
    This Article surveys recent developments in criminal procedure and law in Virginia. Because of space limitations, the authors have limited their discussion to the most significant published appellate decisions and legislation

    Sonoelectrochemical degradation of formic acid using Ti/Ta2O5-SnO2 electrodes

    Get PDF
    AbstractAdvanced oxidation processes (AOPs) are modern methods using highly reactive hydroxyl radicals for the oxidation of persistent organic (sometimes inorganic) compounds in aqueous phase. Among AOPs, sonoelectrochemical degradation is a technique employing electrochemistry and ultrasound as the main source of energy without the need for additional chemicals for the process. The annual production of formic acid (FA) is around 800,000tons and is a constituent in wastewaters from tannery, chemical, pharmaceutical, dyeing industries etc. Thus far sonoelectrochemical methods have never been applied to FA decomposition. The aim of this paper is to investigate the sonoelectrochemical decomposition of FA, optimize the sonochemical and electrochemical parameters involved in FA degradation and compare the results with other existing AOPs. Sonoelectrochemical degradation of FA was found to be either comparable or better than other AOPs in terms of time and degradation efficiency. The highest 97% mineralization of FA was obtained using 1176kHz ultrasonic irradiation combined with 20mA electrolysis in 120min. The fastest FA degradation kinetics with a rate constant of 0.0374min−1 were generated at 381kHz at 20mA at an ultrasonic power of 0.02W/cm3
    • …
    corecore